Designing a Modern Data Stack Architecture
Design a modern data stack with warehouse, ingestion, dbt, and BI layers. A phased rollout ships the core in 8-12 weeks.
- Modern data stack combines cloud data warehouses (Snowflake, Databricks, BigQuery), ingestion tools (Fivetran, Airbyte), transformation layer (dbt), and BI tools (Looker, Tableau) with orchestration (Airflow, Dagster)
- Key benefits: rapid deployment (days vs months), pay-as-you-go pricing, infinite scalability, separation of storage and compute, and rich ecosystem of integrated tools
- Start with warehouse selection based on workload (Snowflake for general purpose, Databricks for ML/AI, BigQuery for Google Cloud native), then add ingestion and transformation before analytics layer
The modern data stack has revolutionized how organizations collect, process, and analyze data. This guide explores the key components and design principles for building a scalable, cost-effective data architecture.
Prerequisites
This guide assumes familiarity with:
- Cloud computing concepts (AWS, GCP, or Azure)
- SQL and basic data modeling
- ETL/ELT concepts
- Data warehousing fundamentals
What is the Modern Data Stack?
The modern data stack is a cloud-native collection of tools that work together to handle the complete data lifecycle. Key characteristics include:
- Cloud-native: Built for cloud scalability and economics
- Modular: Best-of-breed tools that integrate via APIs
- Managed: SaaS or managed services reduce operational burden
- SQL-centric: Familiar interface for analysts and engineers
Core Components
1. Data Sources
Modern architectures must handle diverse data sources:
- Operational databases: PostgreSQL, MySQL, MongoDB
- SaaS applications: Salesforce, HubSpot, Stripe
- Event streams: Mobile apps, websites, IoT devices
- Files: S3, GCS, Azure Blob Storage
2. Data Ingestion
Move data from sources to your data platform.
Batch Ingestion Tools:
- Fivetran
- Airbyte
- Stitch
Real-time Streaming:
- Kafka
- AWS Kinesis
- Confluent Cloud
Design Considerations:
┌─────────────────────────────────────────────────────┐
│ Data Sources │
│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │
│ │ DB │ │ API │ │Events│ │Files│ │ SaaS│ │
│ └──┬──┘ └──┬──┘ └──┬──┘ └──┬──┘ └──┬──┘ │
└─────┼────────┼───────┼────────┼────────┼───────────┘
│ │ │ │ │
▼ ▼ ▼ ▼ ▼
┌─────────────────────────────────────────────────────┐
│ Ingestion Layer │
│ ┌──────────────────┐ ┌──────────────────────┐ │
│ │ Batch (Fivetran)│ │ Stream (Kafka) │ │
│ └────────┬─────────┘ └──────────┬───────────┘ │
└───────────┼───────────────────────┼─────────────────┘
│ │
▼ ▼
┌─────────────────────────────────────────────────────┐
│ Data Lake / Lakehouse │
└─────────────────────────────────────────────────────┘
3. Data Storage
The storage layer is the foundation of your architecture.
Cloud Data Warehouses:
| Platform | Strengths | Best For |
|---|---|---|
| Snowflake | Separation of compute/storage, ease of use | Multi-cloud, SQL-heavy |
| BigQuery | Serverless, ML integration | GCP ecosystem |
| Databricks | Lakehouse, ML/AI | Advanced analytics |
| Redshift | AWS integration | AWS-native shops |
Lakehouse Considerations:
- Combines data lake flexibility with warehouse performance
- Supports structured and unstructured data
- Enables ML workloads alongside BI
4. Data Transformation
Transform raw data into analytics-ready models.
dbt (data build tool): The standard for transformation in the modern stack.
-- models/marts/customers/dim_customers.sql
{{ config(materialized='table') }}
with customers as (
select * from {{ ref('stg_customers') }}
),
orders as (
select * from {{ ref('stg_orders') }}
),
customer_orders as (
select
customer_id,
count(*) as order_count,
sum(amount) as lifetime_value
from orders
group by customer_id
)
select
c.customer_id,
c.name,
c.email,
co.order_count,
co.lifetime_value
from customers c
left join customer_orders co on c.customer_id = co.customer_id
5. Data Orchestration
Coordinate and schedule data pipelines.
Popular Tools:
- Airflow / Astronomer
- Dagster
- Prefect
- dbt Cloud
Key Features:
- Dependency management
- Failure handling and alerting
- Monitoring and observability
- Backfill capabilities
6. Business Intelligence
Enable self-service analytics and reporting.
BI Platforms:
- Looker
- Tableau
- Power BI
- Metabase
- Mode
Semantic Layer: Consider a semantic layer for consistent metrics:
- dbt Metrics
- Cube
- AtScale
7. Data Observability
Monitor data quality and pipeline health.
Observability Tools:
- Monte Carlo
- Anomalo
- Great Expectations
- Soda
Key Capabilities:
- Freshness monitoring
- Volume tracking
- Schema change detection
- Anomaly detection
Reference Architecture
┌─────────────────────────────────────────────────────────────┐
│ DATA SOURCES │
│ Databases SaaS Apps Events Files APIs │
└──────────────────────────┬──────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ INGESTION LAYER │
│ Fivetran / Airbyte / Kafka │
└──────────────────────────┬──────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ STORAGE LAYER │
│ Snowflake / BigQuery / Databricks │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Raw Layer │→│ Staging │→│ Marts │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└──────────────────────────┬──────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ TRANSFORMATION LAYER │
│ dbt │
└──────────────────────────┬──────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ CONSUMPTION LAYER │
│ BI Tools Notebooks Applications ML Platforms │
└─────────────────────────────────────────────────────────────┘
Summary
The modern data stack provides a flexible, scalable foundation for data-driven organizations. Key principles:
- Choose cloud-native tools that scale with your needs
- Embrace modularity with best-of-breed components
- Invest in transformation with dbt for maintainable data models
- Prioritize observability to catch issues before they impact decisions
- Enable self-service with semantic layers and quality BI tools
Next Steps
- Assess your current architecture against modern patterns
- Identify your highest-priority use cases
- Select your core storage platform
- Implement dbt for transformations
- Add observability early, not as an afterthought
Related Resources
- Building a Data Governance Framework From Scratch - Architecture must support governance requirements
- Data Strategy Assessment Checklist - Assessment includes architecture evaluation
- What is Data Strategy and Why Does Your Organization Need One? - Architecture implements strategy objectives
- How to Measure Data Quality - Learn to implement quality monitoring in your data pipelines
- Browse all guides - Explore more comprehensive implementation guides
Process Flow Diagram
flowchart TD A["Designing a Modern Data Stack Architecture"] --> B["Define scope"] B --> C["Map stakeholders & data assets"] C --> D["Implement controls & workflows"] D --> E["Measure outcomes and iterate"]
Sources & references
- FinOps Framework— FinOps Foundation
- Gartner Glossary: Data Integration— Gartner